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Classical adiabatic angles and quantal adiabatic phase 

M V Berry 
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 29 May 1984 

Abstract. A semiclassical connection IS established between quantal and classical properties 
of a system whose Hamiltonian is slowly cycled by varying its parameters round a circuit. 
The quantal property is a geometrical phase shift y,, associated with an eigenstate with 
quantum numbers n = {n,}: the classical property is a shift A@,(  I )  in the Ith angle variable 
for motion round a phase-space torus with actions I = { I , } ;  the connection is At?, = -icy/dn,. 
Two applications are worked out in detail: the generalised harmonic oscillator, with 
quadratic Hamiltonian whose parameters are the coefficients of q2,  q p  and p ' ;  and the 
rotated rotator, consisting of a particle sliding freely round a non-circular hoop slowly 
turned round once in its own plane 

1. Introduction 

Consider a quantal or classical system with N freedoms, whose Hamiltonian 
H ( q ,  p ;  X ( t ) )  depends on a set of slowly changing parameters X = { X w }  as well as 
dynamical variables or  operators q = { q,}, p = { p , }  ( i  S j  Q N). The evolution of the 
system is governed by an  adiabatic theorem. In the quantal case (Messiah 1962), this 
states that a system originally in an  eigenstate, labelled by one or more parameters 
n = {n,}, will1 remain in the same eigenstate In; X ( t ) ) ,  with energy E , ( X ( t ) ) ,  as the X 
vary. In the classical case (Dirac 1925), the theorem states that an  orbit initially on 
an  N-dimensional phase-space torus with actions I = {I,} (Arnold 1978) will continue 
to explore the tori with the same values of I (adiabatic invariants), in spite of the 
changing Hamiltonian corresponding to X (  t ) ,  provided such tori continue to exist 
(for example if the system remains integrable for all parameters X ) .  

These well known adiabatic theorems fail to describe an important feature of the 
evolution, which manifests itself if the Hamiltonian returns to its original form after 
a (long) time T, i.e. X (  T )  = X ( 0 ) .  We shall describe such changes as taking the system 
round a circuit C in the space of parameters X .  

Quantally, the feature is a geometricaIphasefactor exp(i y,( C ) )  accumulated round 
C by a system in the nth state: if the state is initially lUr(O)), then the state at T is 

(The second factor contains the familiar dynamical phase, and is present even if the 
parameters remain constant, and the third factor IUr(0)) is an  expression of the adiabatic 
theorem.) A discussion of y,,( C ) ,  as well as general formulae and  illustrative examples, 
is given by Berry (1984a) and Simon (1983), commenting on an  early version of that 
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16 M V Berry 

paper, explains how the geometrical phase embodies the anholonomy (non-integrable 
connection) of Hermitian line bundles. 

Classically, the feature that the adiabatic theorem does not describe is shifts 
AB( I ; C )  in the angles 8 = {e,} conjugate to the actions I, in addition to those expected 
on the basis of the instantaneous frequencies w = { w , ( I ;  X ) } :  if the initial angles are 
B ( O ) ,  then after the circuit C the position of the system on its torus I is given by 

B ( T ) =  O(O)+ d t o ( I ; X ( t ) ) + A B ( I ;  C). ( 2 )  loT 
The existence of the AB as a general feature of slowly cycled integrable systems was 
discovered by Hannay (1984), and I will refer to these angle shifts as 'classical adiabatic 
angles', or as 'Hannay's angles'. 

My purpose here is to show by a semiclassical argument that Hannay's angles AB 
are indeed classical analogues of the quantal adiabatic phase y,,( C ) ,  and to establish 
the precise relation between these quantities. This analysis will be presented in 9 3. As 
a preliminary, 0 2 will contain an alternative to Hannay's (1985) derivation of his 
angles. Sections 4 and 5 give a discussion of two families of one-dimensional systems 
(both suggested by Hannay) for which classical and quantum mechanics can be worked 
out in detail, thus confirming the correctness of the general theory of 9 3. The first 
system is the 'generalised harmonic oscillator', consisting of a quadratic Hamiltonian 
for which the coefficients of q2, qp and p z  are slowly varied; the second is the 'rotated 
rotator', consisting of a particle sliding freely round a non-circular hoop which is 
slowly rotated in its own plane. Two appendices give instructive 'elementary' deriva- 
tions of Hannay's angles for these systems, based on asymptotic analyses of the 
corresponding Newtonian equations. 

2. Hannay's angles 

The evolution of angle variables, which by ( 2 )  determine the classical adiabatic angles 
AB, can be determined by making a canonical transformation to action-angle variables. 
This is achieved (Landau and Lifshitz 1976) in terms of a generating function 
S'"'(q, I ;  X ( t ) ) ,  according to the scheme 

In these formulae, the superscript LY labels the branches of S, a function whose 
unavoidable multivaluedness reflects the fact that, for a given torus I,  q does not 
uniquely determine p (figure 1 ) .  

The new Hamiltonian R differs from the old Hamiltonian H in value as well as 
functional form, because the canonical transformation is time dependent through the 
slowly changing parameters X (  t ) .  In fact 

g(0, I ,  t )  = % ( I ;  x(t))+(dx/dt)(a/aX)S'"'(q, I ;  X ( t ) ) ,  

XU; X W ) =  w q ( e ,  1 ;  X ( t ) ) , p ( B ,  w w ) ;  x( t ) )  

(4) 

(5) 

is the (angle-independent) 'action' Hamiltonian corresponding to constant X .  At 

where 
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Figure 1. Torus with action I = (1/277) 4 p dq for a system with one freedom, illustrating 
multivaluedness of mappings from q to p and q to 8. 

any time t, the branch a and the value of q occurring in (4) are uniquely defined by 0 
and I. 

To obtain an explicit form for fi, we define the single-valued function 

y(e,l;x)~ss'")(q(e,z;x), I;x),  ( o ~ e < 2 ~ )  ( 6 )  

so that 

Thus the new Hamiltonian becomes 

(8) 

This is globally single-valued, because q and p are periodic functions of 8, and the 
increment of Y round a circuit is 

Y (  e + 2 .rr, I ; x - Y( e, z ; x ) = p d q = 2 ..I, ( 9 )  I 
which does not depend on X .  

Hamilton's equation for the angles is 

d e / &  = afi/ar. (10) 

When applied to (8), the first term gives that part of the evolution which would occur 
even if the parameters remained constant, arising from the frequencies 

w ( 1 ;  X) = axe(z; X)/dZ. (11) 

What we are seeking, however, is the angle shift defined by (2),  and this arises from 
the second term in (8): 
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As it stands, this integral is difficult to evaluate because the integrand depends on 
time implicitly through the changes in 8 and  I as well as explicitly through the variations 
of X. It is natural at this point to invoke the adiabatic technique (Arnold 1978) of 
averaging over the implicit (fast) variations by integrating over the torus at each time 
t .  When applied to the Hamilton equation conjugate to ( I O ) ,  this procedure shows 
that the actions I remain constant in spite of the (slow) variations in X-which is of 
course the familiar adiabatic theorem. When applied to (12),  it gives 

where 

Equation (13) has the form of a line integral over a single-valued function in 
parameter space. The first term vanishes because aY/aX is a gradient. The second 
term can be transformed by Stokes' theorem into an  integral over any surface A, in 
parameter space, whose boundary is C. In the language of differential forms (Arnold 
1978): 

where the angle 2-form is expressed in terms of W, given by 

d e  d p  A dq. (16) 

Of course the forms in this expression are parameter-space forms, not the more familiar 
phase-space ones. A more explicit expression, for the case where {Xp}  can be written 
as a three-dimensional vector X. is 

A8,(I,; C ) =  -- a 51 d A .  W ( I ; X )  a I ,  
csA = C 

where dA denotes the element of area in parameter space and  

W (  I ; X )  = 7 d 0 Cxp, ( 8, I ; X )  A Cxq, ( 8, I ; X ) .  (18) ( 2 . n )  9 
The formulae (15)-( 18) for the classical adiabatic angles constitute one version of the 
expressions obtained by Hannay (1985). It is not difficult to show that Hannay's angles 
are invariant under parameter-dependent and  action-dependent deformations of the 
(arbitrary) origin from which the angles 8 are measured, i.e. under 

e-, e + p ( z ;  x), (19) 

provided p is single-valued across the area A in parameter space. This classical 
invariance corresponds to the invariance of the quantal phase factor under parameter- 
dependent changes in the phases of the eigenvectors In; X) (see the appendix of Berry 
1984a). 



Semiclassical theory of quantal adiabatic phase 19 

3. Angles and phase: semiclassical theory 

The quantal geometrical phase y n (  C )  defined by equation ( 1 )  will be written in the 
form 

Y n ( C ) = -  JJ  d A *  V ( n ; X )  
PA=C 

where 

V ( n ;  X)  = Im V x  A ( n ;  XIVxln ; X), 

corresponding to equation (7) of Berry (1984a) and analogous to (17) and (18) of the 
preceding section. In position representation we define the wavefunction +,, by 

+ n ( q ;  X )  = ( 4  I n ;  X), (22) 

so that the phase 2-form becomes 

where 

Semiclassically, +, is associated with a torus whose actions are quantised by the 
corrected Bohr-Sommerfeld rule (Keller 1958) 

I ,=(n,+a,)h (25) 

where the a, are N constants whose values are unimportant in the present context. 
The wavefunction is obtained from the torus by projection from phase space to q 
space, according to the method of Maslov (see Maslov and Fedoriuk (1981) and 
simplified presentations by Percival (1977) and Berry (1983)): 

+ n ( q ;  X ) = C  a,(q, 1;  X)  exp[ih-'S'"'(q, 1;  -VI, (26) 

where S'" is the classical generating function (equation ( 3 ) ) ,  the summation over a 
corresponds to all branches p'"' contributing at q (figure I), and the amplitude is given 
in terms of the projection Jacobian by 

(this quantity may be positive or negative, corresponding to 77/2 phase shifts across 
turning points). 

When the wavefunction (26) is substituted into ( 2 3 ) ,  products of contributions from 
different branches a give rapid oscillations and cancel semiclassically on integrating 
over q, leaving 

1 1 de'"' 
V(n;X)=-V,r ,  d q ~ ~ - - - V V , S ' " ( q ,  1 ; X ) .  

h J (277) dq 

Transformation of the variables of integration from q to 8, and use of the formulae 
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(6) and (7) give 

1 
= -;W(I; X ) ,  

thus relating the phase 2-form to the angle 2-form (18). 

between Hannay’s angles and the geometrical phase: 
Finally, this relation, together with (17) and (20), immediately gives the connection 

where the association (25) enables the quantum numbers n to be considered as 
continuous variables. 

4. Example: generalised harmonic oscillator 

The classical Hamiltonian for this system with one freedom is 

H = $ ( X (  t)q2+2 Y (  t ) q p + Z (  t ) p 2 ) .  (32) 

The parameters are X, Y, Z ;  when these are held fixed, H describes oscillatory motion 
round elliptic contours in the phase plane (figure 2), provided 

xz> Y*,  (33) 
and we assume henceforth that this remains the case as X ,  Y,  Z vary. For given energy 
E the area of the contour is 2 r E / ( X Z -  Y2)”*, and this is 27rZ by definition, so the 
action Hamiltonian (5) is 

R ( Z ; X ) = Z ( X Z -  Y2)’/* (34) 

giving the action-independent frequency (1 1 )  as 

w = ( X Z -  Y2)’/2. 

Energy E 

area 2nI 

(35) 

Figure 2. Elliptic phase-plane contour for a generalised harmonic oscillator with Hamil- 
tonian (32). 
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It will be shown in appendix 1 that when the parameters vary the Hamiltonian 
(32) describes an  oscillator with parametrically forced frequency, whose classical 
motion, including Hannay’s angle, can be determined by the WKB method commonly 
employed in quantum mechanics. Here the angle 2-form will be calculated from (16), 
and requires the solution of Hamilton’s equations for fixed X, Y, Z in the form 
q(  8, I ;  X )  and  p (  6, I ;  X). Choosing the origin of angle at  the positive extreme of the 
q motion (figure 2) the solutions are 

as can easily be verified. Equation (16) now gives 

A little reduction produces the symmetrical form 

W = - $ I ( X Z -  Y2)-3/2(X d Y A d Z +  Y d Z A d x - t z d X ~ d Y ) .  (38) 

If X, Y, Z are regarded as Cartesian components of a vector X ,  this can be written 

W ( I ;  X )  = -iZX(XZ- Y2)-3’2. 

A = + [ X i ’ +  Y(@+j%j)+Z$2]. (40) 

(39) 

Quantally, (32) corresponds to the Hamiltonian operator 

When the parameters are constant, this gives rise to the Schrodinger equation satisfied 
by the wavefunction (22), namely 

As is easily verified, the normalised solution can be written as 

where x n (  5) are the real, normalised, Hermite functions satisfying 

and  the energies are exactly given by the semiclassical formula 

(44) E, = ( n + f ) A w = ( n + t) A (XZ - Y’) ‘ I 2 .  

This wavefunction must now be substituted into the exact formula (23) for the 
phase 2-form, giving 
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Transforming the integration variable from q to 5 and using the standard result 

(46) 

leads to 

The semiclassical quantisation rule ( n + i ) =  I / h  (cf ( 2 5 ) )  is exact for this case, and 
comparison of (47) with the angle 2-form as given by (37) confirms the truth of the 
central semiclassical relation (30). 

5. Example: rotated rotator 

A particle of unit mass slides freely round a non-circular hoop, which is slowly turned 
through one complete rotation, in its own plane, about a centre 0 (figure 3). The 
rotation can be described by a single parameter X, namely the orientation angle of 
the hoop, which slowly varies from 0 to 2 ~ .  The particle motion in the plane with 
coordinates q = (x, y )  can be described by the Hamiltonian 

H(q ,p ;X( t )= ip :+$p$+ V(xcosX( t )+ys inX( t ) ,  - x s i n X ( t ) + y c o s X ( t ) ) ,  (48) 

where V is a confining potential which is zero in a narrow strip centred on the hoop 
and very large elsewhere. 

For fixed X, the particle executes periodic motion, whose constant speed relative 
to the hoop is the magnitude p of the momentum p .  The action is 

I = i p 2  (49) 

0 = 2 m / 2  (50) 

where 2 is the length of the hoop, and the angle may be taken as 

where s is arc length measured relative to a material point A on the hoop (figure 3). 
(For this problem with two freedoms there is of course a second pair of action-angle 
variables, corresponding to transverse vibrations of the particle, but this motion is 
considered here to have zero amplitude.) 

Figure 3. Coordinates and notation for the rotated rotator; the hoop has length Y and 
area Sp. 
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The classical angle shift for a complete turn can be written as a line integral, using 
(13) with the first term omitted because it gives zero when integrated 

Changing variables from 0 to s, and writing the momentum using (49) as 

p = ( 2 7 T I / Y ) t ,  ( 5 2 )  

where t is the hoop’s unit tangent vector at the point q, this becomes 

Elementary geometry gives 

t .  i iq/aX = q ( s )  sin a ( s )  (54) 

where q is the radius of the hoop at s and (Y the angle between the radius and the 
tangent; thus t .  ;Jq/dx is independent of the orientation X, and  

= - 8 7 ~ ’ d / 2 ’  ( 5 5 )  

where d is the area of the hoop. A more conventional derivation of this result is given 
in appendix 2. 

Writing Hannay’s angle in the form 

A 0 = - 2 7 ~  + 2 ~ (  1 - 4 7 ~ d /  2’). ( 5 6 )  

we see that the first term gives the expected phase slippage resulting from the fact that 
the origin A, from which the angle is measured, has made a complete rotation. The 
non-trivial aspect of the anholonomy is embodied in the second term. By the 
isoperimetric inequality this term is never negative, so that for small deviations from 
circularity the particle appears to have advanced further round the hoop than would 
be predicted by an  argument that neglected anholonomy. Hannay’s hoop is thus a 
detector of complete rotations and, more generally, of absolute angular displacements, 
closely analogous to the ring gyroscopes (Forder 1984) employed to detect angular 
velocities, and  to the Sagnac effect (Post 1967). 

Quantally, the rotator eigenstates for fixed X are 

$n(q; X )  = ( a ( q ;  X)/LF’ ’) exp[2r ins(q :  x)/Y] ( 5 7 )  

where the amplitude a which confines particles to the hoop can be expressed in terms 
of a perpendicular coordinate T (figure 3) by 

a * =  6 ( v ( q ;  X I ) .  (58) 

The adiabatic phase Y,,, accumulated during one rotation of the hoop, can be 
calculated as a circuit integral (cf (20) and ( 2 1 )  and Berry 1984a) from 

d X 

yn = -Im d X  d x  1 dy$X(q; X ) ; I X $ , ( q ;  X ) .  (59) 
-L --5 
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Substituting (57 )  and changing to s, 7 coordinates gives 

Now, inspection of figure 3 shows that 

aslax = -q sin (Y 

so that 

yn = -8 . rr2nd/=Y2.  

But n = Z/h, so that when compared with the angle shift ( 5 5 )  this result gives another 
confirmation of the central semiclassical relation (3 1). 

6. Discussion 

At the heart of this paper lies the relation (31) between the geometric adiabatic phase 
shift in quantum mechanics and Hannay’s adiabatic angles in classical mechanics. 
The relation holds at the level of semiclassical approximation, and its applicability 
is restricted to systems whose classical motion is integrable (for fixed parameters) and 
whose quantal stationary states are associated with phase-space tori. How realistic is 
a treatment dependent upon this restriction? 

For the case of one freedom, all bound systems are integrable, with orbits on 
one-dimensional tori (closed energy contours) in the phase plane. It is therefore not 
unrealistic to consider a family of such systems, and the example of the generalised 
harmonic oscillator provides an illustration. Nevertheless, caution should be exercised 
when considering systems possessing more than one torus with the same action, because 
then barrier penetration effects may cause discordance between the quantal and classical 
adiabatic theorems, as discussed by Berry (1984b). 

For more freedoms, integrability is exceptional, because of the occurrence of chaotic 
motion (Lichtenberg and Lieberman (1983)). Even in quasi-integrable systems, where 
most of the phase space is occupied by tori, variation of even one parameter X will, 
generically, cause the system to pass through many resonant zones where the tori are 
destroyed. Therefore our arguments (like most theories of semiclassical wavefunctions) 
apply only to very special systems when N >  1. In spite of this, some exceptional 
families of integrable systems are interesting, as illustrated by the example of the 
rotated rotator. More generally, the argument for that case could be adapted to apply 
to slow rigid rotation of any multidimensional integrable system-such as an elliptic 
or cubical cavity containing particles-or even any non-integrable system with a stable 
closed orbit. 

In the case where classical motion is chaotic, it is not clear what is the classical 
analogue of the quantal adiabatic phase, or of the phase 2-form. In view of the fact 
that the latter quantity for state In) has singularities (in parameter space) where i n )  
degenerates with the state above or below (Berry 1984a), and also because degeneracies 
presumably get denser as h + 0, the classical analogue of the phase 2-form at parameters 
X might give a measure of the average density of degeneracies near X .  
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Appendix 1. Newtonian asymptotics of generalised harmonic oscillator 

The time-dependent Hamiltonian (32) yields equations of motion for q and p .  Eliminat- 
ing p gives the Newtonian equation for the coordinate q ( t )  as 

q - ( Z /  Z) q + [XZ - Y2 + ( Z Y  - YZ)/ Z]q = 0 ( A l . l )  

where dots denote time derivatives. Defining a (small) adiabatic parameter E and a 
‘slow time’ variable T by 

X = X( T )  etc, T = E t ,  (A1.2) 

and eliminating the term in 4 by introducing the new coordinate Q ( T )  defined by 

q ( t )  = [ Z ( ~ ) I ” ’ Q ( d ,  (A1.3) 

gives 

Q”+E-*{XZ- Y2+E(Z’Y-  Y ‘ z ) / z + E 2 [ f ( Z ’ / Z ) ’ - ~ ( Z ’ / Z ) 2 ] } Q = 0  (A1.4) 

where primes denote derivatives with respect to T. 

This equation decribes a parametrically driven oscillator whose variable frequency 
is given by adding to (35) some terms arising from the time-dependence of H. Because 
of the restriction (33) and the assumed smallness of E the quantity in curly brackets 
in (A1.4) never vanishes, so that the motion is always oscillatory and never exponential. 
Therefore the most elementary form of WKB asymptotics (see e.g. Froman and Froman 
1965) may be employed, without the complications that would arise from turning 
points, to determine Q ( T )  for small E.  The leading-order behaviour is 

Q( 7 )  == [ 1 + 0( E ) ]  COS[8( T ) ] (  X Z  - Y2)-”* 

where 

(A1.5) 

(A1.6) 

e(0) being the initial phase. Of course these terms correspond precisely to those in 
equation (21, enabling Hannay’s angle to be identified as 

A S = $ j o  dt  ( Z Y - Y Z )  
Z(XZ- Y2)i’2‘ (A1.7) 

Transforming to a line integral in parameter space and thence, by Stokes’ theorem, 
to a surface integral, gives 

(A1.8) 
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which reduces to 

1 , , /*(X d Y  A d Z +  Y d Z  A d X + Z  d X  Ad Y ) .  
(XZ - Y - )  

(AI .9) 

This is precisely the angle shift given by the previously obtained (38) and  (15). 

Appendix 2: Rotated rotator in a rotating frame 

In the frame of reference rotating with the angular velocity R = d X / d t  of the hoop, 
the acceleration s’ is determined by the centrifugal and Euler pseudo-forces. (The 
Coriolis force acts perpendicular to the motion and  thus affects only the normal reaction 
of the hoop on the particle.) Thus 

s’=t .  [ - n A  (a  A q)-h A 41 (A2.10) 

where the vector 0 is normal to the hoop’s plane, and  IRI = R. Referring to figure 3 
we see that this can be written 

i ( t )  = C L 2 ( r ) q ( s ( t ) )  dq(s (  t ) ) / d s  -h( t ) q ( s (  t ) )  sin[cY(s( t ) ) ] .  (A2.11) 

Integrating twice we obtain 

s(  t )  = so+pot  + dr’( t - t’){;CL*( t ’ )  dq2(s(  t ’ ) ) /ds )  I: 
-h ( t ‘1 q ( s ( t ’) ) sin[ a ( s ( t ‘) ) 3) (A2.12) 

as the equation implicitly determining s ( t ) ,  where so and po  are the initial position 
and velocity. 

Because R and h are small, the particle makes many circuits while the hoop rotates 
a little, so that the s-dependent quantities in the square brackets can be replaced by 
their averages round the hoop, giving the following explicit formula for the position 
of the particle after the (long) time T in which the hoop turns once: 

s ( T )  = so+poT+ ds- 
d s  

(A2.13) 

The first hoop integral (from the centrifugal force) vanishes. The entire anholomic 
effect thus arises, in this formulation, from the Euler force. Use of 

JOT d t (  T -  t)h(t) = d t  CL(t) = 2 ~  loT 
gives, finally, 

4 r r d  
S (  T )  = so+poT-- 3 ’  

(A2.14) 

(A2.15) 

in exact agreement with the previously calculated angle shift (55). 
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